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Few contemporary psychological theories have been as 
influential as implicit bias. Since its early demonstrations 
(Fazio, Jackson, Dunton, & Williams, 1995; Greenwald, 
McGhee, & Schwartz, 1998), it has been the focus of 
an enormous body of research (Amodio & Mendoza, 
2010; Greenwald, Poehlman, Uhlmann, & Banaji, 2009; 
Oswald, Mitchell, Blanton, Jaccard, & Tetlock, 2013), 
measured in millions of online volunteers (Xu, Nosek, 
& Greenwald, 2014), and discussed during presidential 
debates (Weir, 2016). However, various issues have left 
implicit-bias researchers divided on how to conceptual-
ize the construct. In their 2017 article, Payne, Vuletich, 
and Lundberg (2017a) introduced a new way of think-
ing about the phenomenon via their bias-of-crowds 
model. In contrast to previous conceptualizations that 
assume implicit bias to represent a relatively stable 
measure of an individual-level variable, the authors 
argued that implicit bias should primarily be under-
stood as a stable feature of situations rather than of 
persons. By reconceptualizing implicit bias in this way, 
the authors proposed that a number of empirical puz-
zles could be solved.

The present article argues against the bias-of-crowds 
model. First, we outline Payne and colleagues’ theory, 
as well as supporting evidence, and the empirical puz-
zles it was proposed to solve. Second, we show using 
both real and simulated data how these empirical puz-
zles can be parsimoniously explained as the expected 
outcomes of individual-level measurement error and its 
reduction via aggregation. Third, we discuss why Payne 
and colleagues’ counterarguments for dismissing mea-
surement error as an explanation for these puzzles have 
been unconvincing. Finally, we draw on publicly avail-
able implicit-bias data to investigate a testable implica-
tion of the model and find it to lack empirical support. 
Given the available evidence, we conclude that implicit 
bias remains best conceptualized as a noisily measured 
individual-level construct, albeit one that, like most 
individual-level psychological constructs, can be affected 
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by features of situations. We then consider the implica-
tions of this conceptualization for implicit-bias research.

The Bias-of-Crowds Model, the Puzzles, 
and the Evidence

The bias-of-crowds model (Payne et  al., 2017a) pro-
poses that implicit bias should be understood as being 
primarily an aspect of social situations rather than of 
individuals. To support this contention, Payne and col-
leagues presented three puzzles that can best be 
explained, they argued, by adopting this view.

First, they observed that implicit bias appears to be 
“large and unstable” (Payne et al., 2017a, p. 233), mean-
ing that although implicit bias is robustly replicable 
(e.g., sample means reliably demonstrate greater pop-
ulation-level automatic associations between “Black” 
and “bad” and between “White” and “good”), it is also 
relatively unstable at the individual level; scores on 
repeated tests correlate weakly (the meta-analytic test–
retest reliability figure the authors provide is r = .42, 
from Gawronski, Morrison, Phills, & Galdi, 2017).

Second, the authors describe how implicit bias 
appears to be “permanent yet unstable” (Payne et al., 
2017a, p. 234), meaning that despite the volatility of 
individuals’ scores from test to test, mean levels of 
implicit bias have been observed to be relatively similar 
in individuals of all ages, from children to older adults 
(Baron & Banaji, 2006).

Third, Payne and colleagues describe the puzzle of 
“places and people” (Payne et al., 2017a, p. 234), refer-
ring to the observation that implicit-bias scores corre-
late weakly with related constructs (e.g., discriminatory 
behaviors) at the individual level but appear to correlate 
more strongly with these constructs at the level of geo-
graphic regions. For example, meta-analyses have esti-
mated the individual-level correlation (r) between 
implicit-bias scores and discriminatory behaviors to be 
as low as .14 (Oswald et al., 2013), but a number of stud-
ies have reported much higher correlations between 
implicit bias and indicators of discriminatory behaviors 
at the group level—for example, between U.S. states’ 
average levels of implicit bias and their relative frequen-
cies of Internet searches involving racial slurs (r = .78, 
Rae, Newheiser, & Olson, 2015).

These, then, are the puzzles that the bias-of-crowds 
model was proposed to resolve: (a) implicit bias is 
unstable yet robustly replicable, (b) implicit bias varies 
within individuals across measurement occasions but 
is stable at the group level, and (c) implicit bias cor-
relates relatively weakly with related constructs at the 
individual level but strongly at the group level.

To solve these puzzles, Payne and colleagues (2017a) 
began by noting that although most conceptualizations 

consider implicit bias to be primarily an individual-level 
construct, there is also a general consensus that implicit 
bias can be affected by features of situations. For exam-
ple, implicit-racial-bias scores have been shown to be 
affected by interacting with a Black experimenter, listen-
ing to rap music, or looking at photos of Black celebri-
ties (for review, see Lai, Hoffman, & Nosek, 2013). The 
bias-of-crowds model departs from past conceptualiza-
tions, however, by proposing that implicit bias is primar-
ily a feature of situations rather than of individuals. 
Thus, just as no implicit-bias researcher would deny that 
implicit bias can be affected by features of situations, 
the bias-of-crowds model does not deny that implicit 
bias is to some extent an attribute of individuals. Payne 
and colleagues (2017a) wrote,

To summarize the view put forward here, although 
implicit bias can in principle exist as an attribute 
of persons or an attribute of situations, the empirical 
evidence is more consistent with the situational 
view. By switching the emphasis from a person-
based analysis to a situation-based view, we arrive 
at a reinterpretation of the empirical data. This new 
interpretation suggests that measures of implicit 
bias are meaningful, valid, and reliable. Contrary 
to most assumptions, however, they are meaningful, 
valid, and reliable measures of situations rather 
than persons. (p. 236)

A Parsimonious Alternative: 
Measurement Error and Aggregation

Should researchers adopt the bias-of-crowds model and 
reconceptualize implicit bias as primarily a feature of 
situations rather than of individuals? We can certainly 
understand the impulse to do so. Since its inception, 
two of the most sustained and damaging critiques of 
implicit-bias research have been the psychometric unre-
liability of its measures and its relatively weak correla-
tion with associated constructs (e.g., Oswald et  al., 
2013; Singal, 2017). The bias-of-crowds model offers a 
seemingly powerful response to such criticisms, paint-
ing implicit bias as “meaningful, valid, and reliable” 
(Payne et al., 2017a, p. 236)—but in the context of situ-
ations, not of persons.

Yet despite how appealing the model may be, it is 
important to consider whether such a reinterpretation is 
supported by the evidence. And in doing so, it is impor-
tant to acknowledge that a parsimonious alternative expla-
nation is readily available for each of the puzzles described 
by Payne and colleagues (2017a). Instead of reconceptual-
izing implicit bias as a feature of situations, this alternate 
view simply requires conceptualizing implicit bias as 
being an individual-level construct measured with 
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substantial measurement error. In this view, although 
implicit bias is a relatively stable feature of individuals, 
scores on implicit-bias tests do not accurately reflect indi-
viduals’ stable levels of bias. Thus, it is natural we would 
see low test–retest and criterion correlations for implicit-
bias scores as a result of the error associated with indi-
vidual measurements (Furr & Bacharach, 2013). In 
addition—although this is perhaps less obvious—it is also 
natural that we would see high aggregate-level correla-
tions. When enough noisy individual-level scores are 
aggregated, positive and negative measurement errors tend 
to cancel each other out, resulting in highly accurate mea-
sures of group means. Assuming that some real differences 
exist among group means (i.e., relatively more or less 
biased individuals clustering together in specific groups), 
this heightened measurement accuracy at the group level 
will tend to produce exactly the observations described 
by Payne and colleagues’ puzzles: higher stability across 
measurement occasions for group means than for indi-
vidual scores (the “large and unstable” and “permanent yet 
unstable” puzzles) and higher correlations between related 
constructs at the group level compared with the individual 
level (the “places and people” puzzle).

These points were touched on in two of the immedi-
ate responses offered to the bias-of-crowds model 
(Kurdi & Banaji, 2017; Rae & Greenwald, 2017). How-
ever, we believe these responses failed to fully elucidate 
the extent to which measurement error undermines the 
key motivations behind the bias-of-crowds model. The 
model was introduced primarily to explain greater sta-
bility among group means than individual scores, and 
greater correlations with related constructs at the group 
level than at the individual level. These were the obser-
vations that led Payne and colleagues to conclude that 
“most of the systematic variance in implicit bias is situ-
ational” (2017a, p. 233). However, as we will show, if 
we fully consider the role of measurement error and 
the way it is reduced by aggregation, we can see that 
(a) even extremely strong correlations at the group level 
can represent relatively trivial amounts of systematic 
variance compared with individual differences and (b) 
each of these puzzles is completely compatible with a 
parsimonious alternative account conceptualizing 
implicit bias as an individual-level construct measured 
with substantial error.

The bias of weekdays: why seemingly large 
aggregate-level effects can be misleading

To demonstrate why higher correlations at the group 
level can be misleading, we used data from the Project 
Implicit race IAT data set (Xu et al., 2014), which con-
tains measurements of the implicit racial bias of 
3,432,939 U.S.-based volunteer participants measured 
on the race IAT (Greenwald et al., 1998; Greenwald, 

Nosek, & Banaji, 2003) between 2004 and 2018.1 Just 
as Payne and colleagues (2017a) note, Project Implicit’s 
data suggest that race-IAT scores are unstable at the 
individual level. Among 1,213 identifiable U.S. cases 
measured on multiple occasions,2 the test–retest cor-
relation (r) is .24 (although this is likely an underesti-
mate; we discuss various estimates of the race IAT’s 
test–retest reliability below in discussing our simulation 
results). The observed relationship between implicit 
bias and related criteria at the individual level is also 
weak: IAT scores correlate at .30 with participants’ 
“thermometer bias” scores (explicit ratings of warmth 
toward Whites minus ratings of warmth toward Blacks). 
However, just as Payne and colleagues observed, aggre-
gating IAT scores within states produces stronger cor-
relations. The test–retest correlation between U.S. states’ 
average IAT scores for 2017 and 2018 is .89, and the 
overall state-level correlation between IAT scores and 
thermometer bias is .55.

Yet although these state-level correlations may seem 
impressively large, they do not represent “most of the 
systematic variance” in implicit bias. In fact, only a 
small amount of variance in implicit bias is attributable 
to variation between states. In the Project Implicit data, 
a linear model predicting IAT scores from fixed effects 
of participants’ states achieves an r2 of .0026. This 
means that participants’ states of residence account for 
just 0.26% of the total variation in IAT scores. By con-
trast, on the basis of the observed individual-level test–
retest correlation of .24 reported above, participants’ 
previous observed scores explain around 6% of the total 
variation in IAT scores (if r = .24, r2 = .0576), and—
assuming momentarily that the test–retest reliability 
0.24 is accurate—participants’ true stable levels of bias, 
if observable, would explain 24% of total variation in 
measured scores (test–retest reliability represents the 
squared correlation between true and measured scores; 
see Cohen, Cohen, West, & Aiken, 2003). Between states 
and individuals, then, most of the systematic variance 
of IAT scores within the Project Implicit data resides at 
the individual level, not the state level.

Why, then, have Payne and colleagues claimed that 
most of the systematic variance in implicit bias is at the 
level of the situation rather than the individual? Another 
possible interpretation is that this phrase was not meant 
to refer to total amounts of variance explained, but to 
amounts of variance explained at specific levels of 
aggregation. This argument could be formalized as fol-
lows: Regardless of the total amount of variation 
explained at each level of analysis, the level of analysis 
at which variables exhibit the highest reliability and 
criterion correlations is the level at which most of the 
systematic variance lies.

However, this position produces some strange con-
clusions. For example, the Project Implicit data also 
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show that implicit bias appears to vary according to the 
day of the week. The relationship is robustly significant, 
F(6, 3,432,932) = 75.36, p < .001, but is also extremely 
weak, with weekdays explaining just 0.01% of variation 
in IAT scores. This suggests a modest conclusion: Week-
days may have some relationship with implicit bias, but 
the relationship, if it exists, is relatively trivial. Yet if we 
aggregate IAT scores within weekdays, we can tell a 
very different story. Aggregated IAT scores for week-
days from 2017 and from 2018 correlate nearly perfectly 
(r = .95; see Fig. 1, bottom left panel), and despite the 
low individual-level correlation in the data between 
implicit and thermometer bias, aggregating scores for 
both variables within weekdays produces a correlation 
of 86 (see Fig. 1, bottom right panel).

But does this mean that most of the systematic vari-
ance in implicit bias is in fact at the weekday level, and 
so implicit bias should be reconceptualized as being 
primarily a feature of weekdays? If we follow the logic 
of the bias-of-crowds model, this seems the unavoid-
able conclusion. Despite the fact that weekdays account 
for just 0.01% of variation in IAT scores, and individuals’ 
previous scores account for around 6%—600 times 

more—aggregating scores within weekdays produces 
both greater test–retest correlations and criterion cor-
relations at the weekday level than at the individual 
level. So if what matters for how we conceptualize 
implicit bias is the level at which we can observe the 
greatest reliability and criterion correlations, then we 
must conclude that most of the systematic variance in 
implicit bias is at the weekday level.

We hope that readers agree that this would be a 
strange conclusion. Weekdays may vary in terms of 
average implicit bias, just as states do. And by aggregat-
ing large numbers of noisy individual-level scores 
within weekdays, we may be able to measure these 
differences extremely accurately, just as we can with 
states. But we should not be so impressed by high 
weekday-level correlations that we deem them to con-
tain most of the systematic variance in implicit bias. If 
enough scores are aggregated, weekday-level implicit 
bias from 2017 can explain a large proportion of the 
weekday-level variation in implicit bias in 2018. But 
this predictive power must be interpreted in recognition 
of the fact that there is very little weekday-level varia-
tion in implicit bias to be explained. Thus, although 
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aggregating large numbers of scores may produce 
apparently larger effects when expressed as correla-
tions, such effects can in fact be relatively trivial in the 
degree to which they explain total observed variance.

Are the “puzzles” puzzling?

To provide a more formal demonstration of how mea-
surement error and aggregation can combine to explain 
each of the puzzles discussed by Payne and colleagues 
(2017a), we used computer simulation. Using the R 
software environment (Version 3.6.1; R Core Team, 
2019), we simulated data sets in which the alternate 
view we have described above—that implicit bias is a 
noisily measured individual-level construct—was 
known to be true. Namely, we specified in simulated 
data sets that (a) implicit bias is a stable feature of 
individuals; (b) implicit bias is correlated with other 
criteria at the individual level; (c) there are group-mean 
differences in implicit bias, and some groups contain 
relatively more or fewer biased individuals; and (d) 
implicit bias is measured with error. With each of these 
conditions met, we examined the extent to which each 
of the empirical puzzles discussed by Payne and col-
leagues (e.g., higher test–retest and criterion correla-
tions at the group level than at the individual level) 
occurred within the simulated data.

The technical details of our simulations were as fol-
lows. We began by simulating normally distributed vec-
tors of individual-level true scores of implicit bias (we 
refer to these vectors as true), and assigning each score 
to one of 10 groups of equal size. At this point we set 
two key parameters: per-group N, which determined 
the number of cases in each group, and the intraclass 
correlation (ICC) of the true scores, which represents 
the proportion of the total variance of the true scores 
explained by group membership (higher ICCs indicate 
more variation between groups relative to variation 
within groups). Following this, we simulated noisily 
measured scores of implicit bias at two different time 
points, test and retest. We then specified a third param-
eter, rtrue,measured, which determined the individual-level 
measurement error by setting the correlation between 
individuals’ true levels of implicit bias (the true scores) 
and each of the measured implicit-bias scores (test and 
retest). Finally, we simulated normally distributed scores 
on a related criterion (which we call criterion) and set 
a final parameter, rtrue,criterion, which determined the cor-
relation between individuals’ true levels of implicit bias 
(the true scores) and the criterion scores.

Our simulation process therefore allowed us to sys-
tematically vary four key parameters: (a) the size of 
groups being aggregated (per-group N), (b) the ICC of 
the true implicit-bias scores, (c) the individual-level 

correlation between true and measured implicit-bias 
scores (rtrue,measured), and (d) the individual-level correla-
tion between true implicit-bias scores and scores on a 
criterion (rtrue,criterion). We selected ranges of values for 
each parameter: for per-group N, 10, 50, 250, and 1,000; 
for ICC, 0.001, 0.01, 0.05, and 0.1; for rtrue,measured, .1, .3, 
.5, .7, and .9; and for rtrue,criterion, .1, .3, .5, .7, and .9. 
Then, across 100 iterations, we simulated data sets con-
sisting of true, test, retest, and criterion scores for each 
unique combinations of parameters.

For each of the simulated data sets, we computed 
four key outcomes of interest: (a) individual-level test–
retest reliability, defined as the correlation between test 
and retest; (b) aggregate-level test–retest reliability, 
defined as the group-level correlation between test and 
retest; (c) individual-level criterion correlation, defined 
as the correlation between test and criterion; and (d) 
aggregate-level criterion correlation, defined as the 
group-level correlation between test and criterion.3

An example of a single data set created via this simu-
lation process is depicted in Figure 2. In this simulated 
data set, the per-group N is 500, the correlation (r) 
between measured and true scores is set to .5, and the 
true ICC is set to .05. In these data, then, just 5% of 
variation in true implicit-bias scores is attributable to 
differences between groups; the other 95% represents 
individual differences. Nonetheless, because of the 
measurement error associated with the measured 
scores, there is a much higher test–retest correlation at 
the aggregate level (r = .85) than at the individual level 
(r = .24).

Test–retest reliability.  Figure 3 displays the test–retest 
reliabilities at the individual and aggregate level obtained 
for different levels of measurement error (rtrue,measured), 
ICC, and per-group N. The red lines show that, unsurpris-
ingly, individual-level test–retest reliability was purely a 
function of measurement error. The blue lines, however, 
show that aggregate-level test–retest reliability depended 
not only on measurement error but also on the ICC and 
per-group N. When ICC was low (i.e., the top row of 
plots), or sample sizes were low (i.e., the leftmost col-
umn of plots), there was little difference between test–
retest reliabilities at the individual and aggregate levels. 
However, as ICCs increased, aggregation of larger groups 
created much higher test–retest reliabilities at the aggre-
gate level than at the individual level.

Criterion correlations.  Similar results obtained for cri-
terion correlations. Figure 4 displays criterion correla-
tions at the individual and aggregate levels for different 
levels of measurement error (rtrue,measured), ICC, per-group 
N, and correlation between individuals’ true levels of 
implicit bias and the criterion (rtrue,criterion). The various 
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shades of red lines show that individual-level criterion 
correlations were a function of both (a) the strength of 
the true criterion correlation and (b) measurement error. 
The various shades of blue lines, however, show that 
aggregate-level criterion correlations depended not only 
on the strength of the true criterion correlations and the 
measurement error but also on ICC and per-group N. 
When ICC was low or per-group N was low, there was 
little difference between criterion correlations at the indi-
vidual and aggregate levels. However, as ICCs increased, 
aggregation of larger groups created substantially higher 
criterion correlations at the aggregate level than at the 
individual level.

Implications for race-IAT scores.  To assess what these 
results may mean for the specific case of implicit racial 
bias, we need to ask, “what are the relevant values of the 
intraclass correlation and measurement accuracy?” 
Observed ICCs of implicit racial bias have varied, but they 
are typically low. For example, we reported above that 
around 0.25% of variance in race-IAT scores in the Project 
Implicit data can be explained by variation between 
states, whereas Vuletich and Payne (2019) reported 1% of 
variance within data gathered by Lai and colleagues 
(2016) to be attributable to differences between universi-
ties. Measurement error also reduces observed ICCs below 
their true levels—the ICCs plotted above in Figures 3 and 
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4 refer to the true ICCs, not the measured ICCs. Given 
these considerations, the most relevant plots to consider 
in Figures 3 and 4 are likely those in the second row, in 
which the true ICC is set to .01; this level of true ICC will 
yield observed ICCs of .01 and lower, depending on the 
level of measurement error.

Measurement accuracy can be assessed via estimates 
of test–retest reliability. Recent meta-analytic work puts 
the test–retest reliability (r) of the IAT at .5 (Greenwald 
& Lai, 2020); however, there is evidence that the race 
IAT (as opposed to, say, a self-esteem IAT) may be less 
reliable than this. Gawronski and colleagues (2017) 
reported 10 test–retest correlations for the race IAT for 
which the weighted mean was .38. And as discussed 

earlier, in the Project Implicit data (which we believe 
is the largest sample to have been measured on the full 
IAT measure on multiple occasions), we observed a 
test–retest reliability of .24. This figure is likely to be 
an underestimate, however, because individuals volun-
tarily retaking Project Implicit’s race IAT may have had 
a reason to believe there was a problem with their 
original scores. In support of this, we found Project 
Implicit scores on retests to be significantly lower  
(M = 0.19, SD = 0.44) than scores on original tests  
(M = 0.30, SD = 0.46), t(1212) = 7.28, d = 0.26, suggest-
ing that participants may have (a) had insight that their 
original score was an overestimate of their bias, (b) 
deliberately tried to reduce their scores on retests, or 
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(c) both. Nonetheless, it seems safe to conclude that 
the test–retest reliability of the race IAT probably lies 
somewhere between .25 and .5, which implies a cor-
relation between measurements and individuals’ true 
scores of somewhere between .5 and .71.

By narrowing our focus in this way, we can see that 
measurement error and aggregation can easily explain 
each of the empirical puzzles concerning race-IAT 
scores discussed by Payne and colleagues. As shown 
in Figure 3, with true ICCs of 0.01 and correlations (r) 
of .5 and .7 between true and measured implicit-bias 
scores, aggregating 1,000 scores per group produced 
average individual-level test–retest correlations of .25 
and .49, respectively, but average aggregate-level test–
retest correlations of .78 and .91, respectively (see the 
shaded region in Fig. 3). And at the same levels of 
measurement accuracy, when the true correlation 
between implicit bias and the criterion was set to .3, 
aggregating 1,000 scores per group produced average 
individual-level criterion correlations of .15 and .21, 
respectively, but average aggregate-level criterion cor-
relations of .65 and .70, respectively (see the shaded 
region in Fig. 4).

Therefore, given levels of measurement accuracy and 
ICCs similar to those observed in the case of implicit bias, 
aggregation of noisy individual-level scores produced 
both greater stability of group means compared with 
individual scores (Fig. 3) and greater correlations with 
related criteria (Fig. 4) at the group level than at the 
individual level. Payne and colleagues’ empirical puzzles 
are therefore not puzzling at all. Rather, they are exactly 
what we would expect to see if implicit bias was a noisily 
measured individual-level construct.

The Counterarguments

Payne and colleagues have offered two main counter-
arguments as to why measurement error is an insuffi-
cient explanation for the puzzles (Payne et al., 2017a; 
Vuletich & Payne, 2019). In what follows we respond 
to each of these arguments.

The internal-consistency argument

Payne and colleagues (2017a) have noted that although 
implicit-bias test scores are unstable over time, they 
nonetheless exhibit relatively high levels of internal 
consistency. This internal consistency, they argue, 
means that although implicit-bias tests capture individu-
als’ biases accurately at each time point, individuals’ 
biases themselves are unstable over time. They write, 
“given that internal consistency cannot easily explain 
the low temporal stability of implicit bias measures, the 
most likely explanation is that the unreliability lies in 

the malleability of people’s psychological biases rather 
than in the tests” (Payne et al., 2017a, p. 234).

The internal consistency of implicit-bias tests is 
indeed greater than their test–retest reliability. A recent 
meta-analytic estimate put the overall internal consis-
tency of the IAT at r = .80 (Greenwald & Lai, 2020), and 
although some evidence suggests—as discussed 
above—that the psychometric properties of the race 
IAT may not be quite as strong as those of other vari-
ants of the IAT, there is little doubt that the tests exhibit 
higher internal consistency than test–retest reliability; 
the meta-analysis authors concluded that test–retest 
reliability “is generally smaller than [internal consis-
tency]; . . . this difference indicates the presence of 
systematic variance in [internal consistency] that is 
unshared among measurement occasions” (p. 436).

Therefore, there does appear to be an important 
amount of variation in IAT scores that is attributable 
neither to individuals’ chronic, stable levels of bias nor 
to random measurement error. However, this does not 
imply that implicit bias is not an individual-level con-
struct. It is normal for individual-level variables to vary 
across time within individuals. For example, scores on 
measures of life satisfaction are known to be affected 
by transient moods and even by sports results (Schwarz, 
Strack, Kommer, & Wagner, 1987). But this does not 
mean that life satisfaction is not an individual-level 
construct. It simply means that individuals’ measured 
scores on the construct at any given time are affected 
by factors other than individuals’ long-term, chronic 
levels of the construct.

In the case of implicit bias, the causal factors that 
underlie intraindividual variation over and above mea-
surement error remain largely an empirical question. 
According to the bias-of-crowds model, intraindividual 
variation is largely caused by individuals’ incidental 
exposure to structural inequalities within social environ-
ments. Such exposure is theorized to make intergroup 
stereotypes temporarily accessible, and thereby produce 
implicit bias. Payne and colleagues (2017a) wrote,

Town A has relatively high levels of systemic 
racism. Housing patterns and schools are highly 
segregated, and they are correlated with large 
disparities in incomes. . . . When police pull over 
motorists, or criminal suspects are described in the 
local news, they are disproportionately Black or 
Hispanic. Town B, in contrast, has low levels of 
systemic racism. Residents know all the same 
stereotypes as everyone else. But strolling through 
the town, residents are unlikely to see those 
stereotypes confirmed by inequalities in living 
conditions and social roles on a daily basis. Because 
of the difference in daily reminders of inequality, 
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the average accessibility of stereotypical links will 
be different in the two towns. Implicit bias will be 
higher in Town A than Town B. (p. 239)

In support of the theorized causal link between such 
“daily reminders of inequality” and implicit bias, Payne 
and colleagues have highlighted associations between 
mean levels of implicit bias within counties and (a) the 
prevalence of slavery in counties in 1860, (b) counties’ 
racial disparities in poverty rates, and (c) counties’ 
racial disparities in intergenerational mobility (Payne, 
Vuletich, & Brown-Iannuzzi, 2019). Further, they have 
highlighted associations between mean levels of implicit 
bias within universities and (a) the presence of Con-
federate statues within universities, (b) racial diversity 
among universities’ faculty, and (c) levels of socioeco-
nomic mobility among students (Vuletich & Payne, 
2019).

However, even if we conceptualize implicit bias as 
an individual-level phenomenon, it is unsurprising that 
these cross-sectional associations exist, and completely 
plausible that the causal arrow could be going in pre-
cisely the opposite direction—that is, individuals’ 
implicit biases produce structural inequalities. It is easy 
to see why universities whose staff and students have 
relatively high levels of implicit bias might be more 
likely to preserve Confederate statues or hire less 
diverse faculties and why counties whose residents 
have relatively high levels of implicit bias might adopt 
policies that create greater racial segregation or eco-
nomic disparities.

Moreover, even if we accept for the sake of argument 
the very plausible hypothesis that there is a causal link 
from exposure to structural inequalities to individual-
level implicit bias, this still does not establish that expo-
sure to structural inequalities is an important cause of 
intraindividual variation in implicit bias between mea-
surement occasions. To establish this, Payne and col-
leagues would need to show not only that the structural 
features of Town A produce relatively higher bias 
among its residents but also that intraindividual varia-
tion in exposure to housing segregation, detained 
motorists, or racist news stories within Town A is sys-
tematically related to intraindividual variation in implicit 
bias. To our knowledge, there is no such evidence. 
However, much current evidence suggests that many 
of the factors likely to underlie intraindividual variation 
in implicit bias are variables that have little to do with 
such structural factors. For example, other intraindi-
vidual factors known to affect IAT scores include emo-
tional states (Dasgupta, DeSteno, Williams, & Hunsinger, 
2009), fatigue ( Johnson et  al., 2016), and motivation 
(Devine, Plant, Amodio, Harmon-Jones, & Vance, 2002). 
It is therefore plausible that factors such as these 

explain much more of the intraindividual variability in 
IAT scores than do structural features of environments, 
and there is currently just as much, if not more, causal 
evidence for these possibilities compared with Payne 
and colleagues’ speculative interpretations of correla-
tional findings. The mere fact of greater internal consis-
tency than test–retest reliability is therefore completely 
compatible with the view that implicit bias is an indi-
vidual-level construct.

The permutation argument

In a follow up article, Vuletich and Payne (2019) reana-
lyzed the longitudinal data gathered by Lai and col-
leagues (2016), who obtained multiple race IAT D score4 
measurements, separated by 1 to 4 days, from approxi-
mately 5,000 participants across 18 different universities. 
Using multilevel modeling, the authors predicted IAT 
scores at Time 2 from IAT scores at Time 1, but decom-
posed variation in Time 1 scores into within-groups and 
between-groups variation. Their model was therefore

IAT IAT IAT IAT_ _ _ _

,

( )t t t tij j ij j

j ij

2 1 1 10 1 2= + + −

+ +

β β β

η ε

where i indexes individuals and j indexes universities, 
IAT_t2ij is the Time 2 IAT score for individual i in uni-
versity j, IAT_t1j is the Time 1 mean IAT score for uni-
versity j, IAT_t1ij – IAT_t1j is the deviation of individual 
i in university j from the university mean, ηj is a random 
intercept adjustment for university j, and εij is the left-
over residual.

In this model, then, β1 is the expected change in 
individuals’ implicit Time 2 bias associated with a 1-unit 
increase in their university’s mean implicit bias at Time 
1 (β1IAT_t1j), whereas β2 is the expected change in 
individuals’ Time 2 implicit bias associated with a 1-unit 
increase in their Time 1 deviation from their university’s 
mean. Observing a larger β1 slope (0.87) than β2 slope 
(0.25), Vuletich and Payne (2019) concluded that the 
effect of the between-universities variation was “much 
larger” (p. 5) than the effect of within-universities varia-
tion, and interpreted this as support for the bias-of-
crowds model:

Vuletich and Payne (2019) considered but rejected 
the idea that this result was a mere artifact of aggrega-
tion. To do so, they used a permutation exercise con-
sisting of the following:

1.	 Randomly reshuffling the university affiliations 
of each individual case;

2.	 redecomposing Time 1 IAT scores into variation 
between and within the reshuffled universities;
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3.	 again predicting Time 2 IAT scores from the recal-
culated between- and within-universities varia-
tion via the above model, recording the resulting 
β1 and β2 slopes; and

4.	 repeating Steps 1 to 3 one hundred times.

They observed the average between-universities 
slope to be reduced compared with their original 
model, and similar in magnitude to the original within-
universities slope (β1 = 0.26). On the basis of this result, 
they argued that their original result could not have 
been due to aggregation alone:

Whereas our original analysis revealed a large 
campus-level effect and a small person-level 
effect, randomly assigning the persons to nominal 
groups left only systematic effects at the person 
level. The large reduction of the campus-level 
effect suggests that there was indeed a campus-
specific signal that was revealed by aggregation. 
(p. 5)

However, there are numerous problems with these 
arguments. First, in this context, a larger β1 than β2 
slope does not indicate a larger effect in terms of total 
variation explained, but merely a greater aggregate-
level correlation than individual-level correlation. And 
as we showed above, correlations at alternate levels of 
analysis can be misleading when there is much more 
variation at one level than another (recall the weekday 
example). This is the case in Lai and colleagues’ (2016) 
data: There is vastly more variation within universities 
than between universities. The within-universities stan-
dard deviation—i.e., the standard deviation of the 

predictor (IAT_t1ij – IAT_t1j)—is 0.41, whereas the 
between-universities standard deviation—i.e., the stan-
dard deviation of the predictor IAT_t1j—is just 0.03. 
Thus, although the β1 slope predicts a very large change 
in individuals’ Time 2 scores for a 1-unit change in 
between-universities variation, this slope must be inter-
preted with care, because university mean IAT scores 
do not differ from each other by 1 unit. The two most 
different universities in terms of Time 1 means were 
the University of California, Irvine (M = 0.50), and Uni-
versity of Texas at Austin (M = 0.63), whose means 
differed by just 0.13 units. By contrast, individuals 
within universities do routinely differ from each other 
by 1 unit. Of all students measured at Time 1, 99% of 
cases differed by at least 1 unit in IAT score from 
another student at their own university.

This is why we get a very different answer regarding 
which effect is larger if we examine variance explained 
rather than slopes. We repeated Vuletich and Payne’s 
analysis and reproduced their exact between- and 
within-universities slopes. However, when we exam-
ined partial r2 values for each effect (Nakagawa & 
Schielzeth, 2013), we found the within-groups effect 
(partial r2 = .058) to explain around 12 times as much 
variance in Time 2 scores as the between-groups effect 
(partial r2 = .005), despite its smaller slope. Figure 5 
displays this discrepancy. The between-groups slope 
(Fig. 5, right) is steeper, but because of the lack of 
variation between groups, it explains far less variation 
than the within-groups effect (Fig. 5, left).

To provide another demonstration that such results 
can stem directly from measurement error and aggrega-
tion, we analyzed Lai and colleagues’ (2016) measures 
of explicit racial bias, which was also measured at 

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

IA
T 

Ti
m

e 
2

IAT Time 1
(Within-Universities Variation)

β = 0.25, partial r 2 = .06

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

IAT Time 1
(Between-Universities Variation)

β = 0.87, partial r 2 = .0005
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decomposed into variation within universities (left) and between universities (right).
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Times 1 and 2. These explicit-bias scores demonstrated 
a high test–retest reliability (r = .86), so we assume it 
is uncontroversial to consider them measures of an 
individual-level construct. To test whether Vuletich and 
Payne’s results would succeed for a noisily measured 
individual construct, we artificially added measurement 
error to these explicit-bias scores by iteratively adding 
normally distributed random noise (M = 0) to the raw 
scores until their test–retest correlation fell below that 
of the implicit-bias scores (r < .246). We then repeated 
Vuletich and Payne’s (2019) variance decomposition 
and modeling approach on these artificially noisy 
explicit-bias scores. By repeating this process 1,000 
times, we found the average between-groups slope to 
be both substantially larger ( β1  = 0.65) and more vari-
able (SD = 0.17) than the average within-groups slope 
(β2  = 0.24, SD = 0.004). Thus, the greater slope on the 
between-groups variation than on the within-groups 
variation observed by Vuletich and Payne is completely 
compatible with implicit-bias scores representing an 
individual-level variable measured with substantial 
error.

Vuletich and Payne’s (2019) permutation result is also 
compatible with this alternative explanation. Group-level 
test–retest correlations rely on the existence of systematic 
group-level variation, meaning that relatively more or 
less biased individuals must be clustered together, at 
least to some extent, within specific groups. Shuffling 
individuals between groups removes systematic group-
level variation, and thus naturally reduces group-level 
test–retest correlations. To demonstrate this, we again 
added random error to Lai and colleagues’ (2016) explicit 
bias measures and, by trial and error, found a configura-
tion giving us a test–retest reliability (r = .24), between-
groups slope (β1 = 0.86), within-groups slope (β1 = 0.24), 
and ICC (0.01) closely matching the values for the 
implicit-bias scores. We then followed Vuletich and 
Payne’s (2019) permutation procedure by (a) shuffling 
university affiliations, (b) redecomposing IAT scores into 
within- and between-universities variation, and (c) rerun-
ning models and saving within- and between-groups 
slopes. Repeating this process 1,000 times, we found that 
the average ICC from shuffled university affiliations was 
reduced to near zero (.0001) and found the average 
between-groups slope (β1  = 0.27) to be roughly equiva-
lent to the average within-groups slope (β2  = 0.24). Thus, 
we were able to produce results mirroring those of 
Vuletich and Payne simply by adding measurement error 
to explicit-bias scores. This again suggests that their find-
ings are completely compatible with the idea that implicit 
bias is a noisily measured individual-level construct.

To be clear, Vuletich and Payne’s (2019) permutation 
result does suggest the existence of some level of 

systematic group-level variation in implicit bias. But the 
existence of systematic variation in implicit bias 
between groups is not in question. Systematic group-
level variation exists on virtually any individual-level 
construct one can think of, so no one would deny that 
this should also the case for implicit bias. In fact, the 
existence of at least some level of systematic variation 
between groups is inherent in the very notion of a 
group-level test–retest correlation, because without sys-
tematic group-level variation, there would be no reason 
to expect groups with relatively high scores at Time 1 
to have relatively high scores at Time 2, and vice versa. 
Indeed, the simple fact that there is a high test–retest 
correlation should be enough to convince us of sys-
tematic group-level variation; the permutation exercise 
is superfluous.

A similar confusion pervaded another recent analysis 
of IAT data by Hehman, Calanchini, Flake, and Leitner 
(2019). These authors used the same permutation-based 
approach as Vuletich and Payne (2019) to test whether 
“the strong explicit–implicit correlations (in racial bias) 
[parentheses added] at larger level of analysis reflect an 
artifact of aggregation or, alternately, coherent regional 
constructs” (p. 1031). Like Vuletich and Payne, the 
authors observed reduced group-level correlations after 
shuffling individuals’ states of residence and claimed 
that “these results indicate that true geography matters, 
and suggest that biases operationalized at the regional 
level reflects cohesive regional constructs” (p. 1031). 
Again, however, the existence of high group-level cor-
relations should be enough to convince us that there 
is at least some level of systematic group-level variation. 
We do not need permutation to prove this.

High group-level correlations are obviously not 
purely an “artifact of aggregation”: This can be seen 
clearly if we consider that if there were no group-level 
variation (i.e., all groups had exactly the same mean), 
it would be impossible to observe a group-level test–
retest or criterion correlation, even if billions of scores 
were aggregated. Rather, high group-level correlations 
are an artifact of aggregation plus some level of system-
atic group-level variation. If we take away systematic 
group-level variation by randomly assigning group 
membership, we take away high group-level correla-
tions. But note that—as shown by our bias-of-weekdays 
example above—the existence of some level of system-
atic variation at the group level does not mean that there 
is an important amount of variation at the group level. 
Very high aggregate-level correlations can in fact rep-
resent rather trivial effects, because if sufficient numbers 
of scores are aggregated within groups, even very small 
amounts of systematic group-level variation can give 
rise to extremely high group-level correlations.
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An Empirical Test of a Targeted 
Implicit-Bias-Expulsion Program

So far, we have shown that (a) each of the puzzles 
regarding implicit bias described by Payne and col-
leagues (2017a) can be parsimoniously explained as 
being the expected results of measurement error and 
aggregation and (b) the counter arguments they have 
provided against this explanation have been unconvinc-
ing. But now we ask: What evidence could prove that 
implicit bias is primarily a feature of environments 
rather than of individuals?

We propose that one possible test of the model can 
be based on its tenet that the stability of group means 
over time is not primarily the result of stability in indi-
vidual-level scores. This implies that if a particular 
group appears relatively biased at Time 1, it will also 
appear relatively biased at Time 2, but this will not be 
because that group contains specific relatively biased 
individuals at both time points. Instead, this group-level 
stability will be due primarily to the fact that “certain 
contexts encourage discrimination more than others, 
largely independently of the individual decision makers 
passing through those contexts.” (Vuletich & Payne, 
2019, p. 6). Payne and colleagues (2017a) wrote,

We assume that the average level of implicit bias 
in a region reflects the average probability of 
having biased accessible links activated for any 
given person and any given moment. If the same 
environmental influences make racially biased 
links accessible for most people in that context, 
then the people for whom implicit bias is measured 
and the people making discriminatory decisions 
do not need to be the same people. (p. 243)

To test this, we could (in theory!) implement a targeted 
implicit-bias-based expulsion program in universities. 
On the basis of implicit-bias scores, we could expel the 
most biased students from a school. If implicit bias is 
primarily an individual-level construct tracking stable 
between-persons differences, this removal of these rela-
tively biased students should lead to a less biased stu-
dent body on later tests. Moreover, this should also 
work in reverse; if we expelled the least biased stu-
dents, we would expect a more biased student body 
on later tests. However, if the bias-of-crowds model is 
correct, such interventions would have little effect on 
universities’ mean levels of bias, because although these 
expulsion programs would remove specific individuals 
from relatively biased and unbiased environments, the 
environments themselves would stay the same, and 
according to the model it is the environments, regard-
less of the specific individuals within them, that are the 

primary factor in producing stability in implicit bias 
over time. Expelling students might artifactually reduce 
aggregate-level mean stability by reducing sample sizes 
at Time 2, but this effect should be no more extreme 
than if we randomly chose students to expel from the 
most biased universities after Time 1.

We used Lai and colleagues’ (2016) data on the 
repeated IAT measurements of students from 18 US 
universities to test this. First, we restricted the data to 
students measured on implicit bias at both Time 1 and 
Time 2. Thus, the total sample size across the 18 uni-
versities was 4,841. We then carried out the targeted 
implicit-bias-based expulsion program. We began by 
identifying nine high-bias and nine low-bias universi-
ties, defined as the universities above or below the 
university-level median score on Time 1 IAT scores. 
Iteratively, we then

1.	 identified the most biased student not yet 
expelled in each high-bias university (the stu-
dent with the highest Time 1 IAT score) and the 
least biased student not yet expelled in each 
low-bias university (the student with the lowest 
Time 1 IAT score);

2.	 “expelled” those students by excluding their 
scores from the Time 2 data; and

3.	 recorded the university-level correlation between 
Time 1 IAT scores (computed from all students) 
and Time 2 IAT scores (excluding the expelled 
students).

We then repeated Steps 1 to 3 50 times. This means 
that by the 50th iteration, 50 high-bias students (at Time 
1) had been expelled at Time 2 from each of the nine 
high-bias universities, and 50 low-bias students (at Time 
1) had been expelled at Time 2 from each of the nine 
low-bias universities. Importantly, this left the vast 
majority of most student bodies intact; the average 
number of students per university was 268.94.5

For comparison, we also tested the results of a ran-
dom expulsion program. This involved a similar pro-
cess, except that in Step 2 we randomly selected a 
student from each university to expel. We again iterated 
each step 50 times, but because of the random vari-
ability in results, repeated the entire iteration process 
1,000 times.

Figure 6 displays the results, in terms of the resulting 
university-level test–retest correlations between Time 1 
and Time 2 scores. The red line shows that targeted 
expulsions dramatically reduced the university-level 
test–retest correlation, and that once 900 total individu-
ally targeted students had been expelled, the university-
level test–retest correlation became negative (r = –.21). 
By contrast, the blue lines shows that expelling students 
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randomly had only a slight negative effect on univer-
sity-level test–retest reliability, although this was vari-
able because of the randomness of the procedure. After 
900 randomly selected students had been expelled, the 
average university-level test–retest correlation remained 
high ( r  = .60).

Contrary to the claims of Vuletich and Payne (2019), 
the stability of university-level means in the data gath-
ered by Lai and colleagues (2016) completely relied on 
the stability of individual-level IAT scores. Universities 
that were high in bias at Time 1 remained high in bias 
at Time 2 precisely because they were attended by rela-
tively biased students measured at both time points, 
and universities that were low in bias at Time 1 remained 
low in bias at Time 2 precisely because they were 
attended by relatively unbiased students who were 
measured at both time points. By “expelling” individu-
ally identified students on the basis of their Time 1 IAT 
scores, the rank-order stability of universities between 
Time 1 and Time 2 was not only removed but also 
reversed: The relatively biased universities at Time 1 
became the relatively unbiased universities at Time 2, 
and the relatively unbiased universities at Time 1 
became the relatively biased universities at Time 2. This 
result is extremely difficult to square with the claim that 

implicit bias is primarily a function of social contexts 
and not of individuals. If it were truly the structural 
features of the their environments that primarily give 
rise to the rank-order stability in universities’ mean IAT 
scores, and implicit bias truly was “a social phenome-
non that passes through individuals like “the wave” 
passes through fans in a stadium” (Vuletich & Payne, 
2019, p. 6), it is not at all clear why targeting and expel-
ling a minority of specific individuals from the universi-
ties would have so effectively turned those ranks on 
their head. The only way to explain this result, we 
believe, is by acknowledging that implicit bias is pri-
marily a noisily measured individual-level construct.

Discussion

We agree with Payne and colleagues (2017a) that social 
environments can influence individuals’ implicit bias. 
People are not born automatically associating “Black” 
with “bad” and “White” with “good”; these associations 
must surely be learned from the environment. And we 
also do not deny that there appears to be nonnegligible 
intraindividual variation in implicit bias and that it is 
plausible, though far from established, that incidental 
exposure to the kind of structural features of environ-
ments discussed by Payne and colleagues influences 
this variation.

However, simply because a construct is affected by 
environments does not make it a property of environ-
ments. In the present article, we have shown that every 
piece of evidence put forward in support of Payne and 
colleagues’ bias-of-crowds model is fully compatible 
with the parsimonious alternate view that implicit bias 
is primarily an individual-level construct measured with 
substantial error. Measurement error and aggregation 
can explain why we see stable group-level means but 
volatile individual scores and why we see greater cor-
relations with related constructs at the group level than 
at the individual level. And neither of the counter argu-
ments provided against this alternate view have been 
convincing. First, the fact of greater internal consistency 
than test–retest reliability suggests only that factors other 
than individuals’ chronic implicit biases affect implicit-
bias test scores, not that those factors are structural 
features of social environments or that this is somehow 
unique for implicit bias. Indeed, most individual-level 
psychological constructs exhibit some level of intrain-
dividual variability and can be affected by incidental 
features of environments. Second, as we showed above, 
the fact that group-level slopes are reduced when group 
membership is randomly shuffled is a natural result of 
the shuffling process’s removing systematic group-level 
variation; the same thing would occur for virtually any 
individual-level variable one can imagine.
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Fig. 6.  The effect of targeted and random expulsion. On the basis 
of Time 1 scores, we expelled the most biased students from the 
most biased universities and the least biased students from the least 
biased universities or we expelled students at random. We then 
tested the effects of these expulsions on aggregate university-level 
test–retest IAT correlations. The blue shading represents the cloud 
of unique instances of random expulsion, and the thick blue line is 
their running average.
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We therefore see little reason to reconceptualize 
implicit bias as being a feature of situations rather than 
individuals, and we believe there are good reasons not 
to adopt this view. First, as we showed above, each of 
the core empirical puzzles motivating the model also 
occur when implicit-bias scores are aggregated within 
weekdays: Scores are more stable, and correlations with 
related constructs are greater, at the weekday level than 
at the individual level. Yet it would be odd to declare 
implicit bias primarily a feature of weekdays rather than 
of individuals. Weekdays explain only a tiny fraction of 
variation in implicit-bias scores, far less than can be 
explained by individuals’ previous scores. To claim that 
most of the systematic variance in implicit bias is at the 
weekday level compared with the individual level 
would be misleading and would represent a misunder-
standing of how large aggregate-level correlations can 
in fact represent relatively trivial amounts of overall 
variation. We believe the same is true of the state-, 
country-, or university-level correlations discussed by 
Payne and colleagues (Payne et al., 2017a; Vuletich & 
Payne, 2019).

Second, contrary to the implications of the bias-of-
crowds model, the rank-order stability of universities’ 
mean levels of implicit bias within Lai and colleagues’ 
(2016) data was completely reliant on the stability of 
individual-level scores. By removing the most biased 
students from the most biased universities at Time 1, 
and the least biased students from the least biased 
universities at Time 1, the rank order of universities’ 
implicit bias was reversed: The relatively more biased 
universities at Time 1 became the relatively less biased 
universities at Time 2, and the relatively less biased 
universities at Time 1 became the relatively more biased 
universities at Time 2. And this occurred despite the 
social context, and the majority of the student bodies, 
remaining unchanged from Time 1 to Time 2. This 
result, we believe, cannot be squared with the bias-of-
crowds model’s claim that mean levels of implicit bias 
in regions are primarily a function of structural features 
of their environments, regardless of the specific indi-
viduals who happen to inhabit them.

As discussed above, some of the immediate responses 
to the bias-of-crowds model touched on arguments 
somewhat similar to ours. However, we believe the 
present article makes a valuable contribution over and 
above these initial responses in at least four ways. First, 
none of the initial responses discussed the crucial point 
that even very high aggregate-level correlation can rep-
resent relatively trivial effects, as our weekday example 
clearly shows. Second, even the original responses that 
mentioned the role of measurement error (Kurdi & 
Banaji, 2017; Rae & Greenwald, 2017) did not discuss 
the role of ICCs, which, as demonstrated via our 

simulations, play a key role alongside measurement 
error and aggregation in producing high aggregate-level 
correlations from weakly related individual constructs. 
Third, initial responses were written before Vuletich 
and Payne’s (2019) follow-up article, making ours the 
first critique of their results and methodology, and thus 
the first demonstration that their results were com-
pletely compatible with implicit bias as a noisily mea-
sured individual-level construct. And finally, our 
targeted implicit-bias-based expulsion program offers 
a novel and, we believe, convincing demonstration that 
when put to an empirical test, the bias-of-crowds model 
fails to find evidentiary support.

What, then, are the implications of recognizing 
implicit bias as an individual-level construct measured 
with substantial error for researchers? We believe the 
field has already made some inroads into grappling 
with this issue. For example, researchers have begun 
to acknowledge that studies interested in individual-
level differences in implicit bias require a greater focus 
on measurement than has previously been the norm 
(Greenwald & Lai, 2020; Kurdi & Banaji, 2017) and that 
in the absence of substantial advances in the accuracy 
of measurement tools, single tests of implicit bias can-
not and should not be used for the purpose of diagnos-
ing with any certainty the long-term level of bias of any 
given individual (e.g., Jost, 2019; Kurdi et al., 2019).

Also important, we believe, is for researchers to rec-
ognize that although aggregate-level relationships can 
likely be estimated more accurately than individual-
level relationships because of the ability of aggregation 
to reduce measurement error, these relationships must 
always be interpreted in the appropriate context. As we 
showed in our simulations, even when the true relation-
ship between variables exists at the individual level and 
is relatively weak, it is possible to observe high aggre-
gate-level correlations, if enough individual-level scores 
are aggregated. So even extremely high aggregate cor-
relations may indicate nothing more than the existence 
of relatively weak individual-level relationships. More-
over, it is possible for aggregate- and individual-level 
correlations to be of opposite sign (Simpson, 1951). For 
example, evidence suggests a positive relationship 
between implicit weight bias and weight at the country 
level, but a negative relationship at the individual level 
(Marini et al., 2013). This can occur for a number of 
reasons, such as confounding (e.g., culturally varying 
factors such as the accessibility of fast food for the poor 
may influence both average weight and attitudes toward 
people who are overweight) or different causal pro-
cesses operating at different levels of analysis (e.g., 
people who are relatively thin or overweight within 
each country may display a self-serving relative prefer-
ence for their own body size, whereas increased 
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average weight within a society may cause greater 
awareness of the health risks of obesity, leading to 
greater overall stigma). Thus, although researchers may 
have the ability to measure aggregate-level relationships 
accurately, they should be careful to always interpret 
these relationships at the level at which they are 
observed and to avoid generalizing them to the indi-
vidual level or overestimating their importance.

As stated at the outset, research on implicit bias has 
been one of the most meaningful and generative social 
psychological topics of recent decades and will 
undoubtedly continue to spur debate as the field con-
tinues to refine and develop its understanding and 
interpretation of its body of evidence. And although we 
do not ultimately find the bias-of-crowds model to be 
convincing, we do think it may prove to be a useful 
signpost for implicit-bias research by forcing research-
ers to truly grapple with and understand the implica-
tions of measurement error and aggregation and, 
perhaps, by renewing interest in studying the factors 
that underlie intraindividual variation in implicit bias.
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Notes

1. All data and code used for all analyses and simulations is 
available on our Open Science Framework page: (https://osf 
.io/tj8u6/).
2. In fact there are 1,939 identifiable U.S. cases with match-
ing User IDs measured more than once on implicit bias, but a 
number of these do not appear to be the same person across 
measurement occasions. For example, multiple cases with the 
same User ID had self-reported age (taking into account mea-
surement date), gender, or race that did not match up across 
measurement occasions, so we chose to exclude these cases 
from calculations.
3. For the criterion correlation the choice to use test rather than 
retest is arbitrary and does not affect overall results.

4. The D score, which is analogous to Cohen’s d at the par-
ticipant level, is calculated by dividing the within-person dif-
ference by the standard deviation of the practice and critical 
blocks combined.
5. Two universities had less than 100 students sampled at both 
time points, Iona College (n = 93) and University of Virginia at 
Wise (n = 82).
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